复习计划

169. 多数元素 摩尔投票法

1 数组 / 字符串

88. 合并两个有序数组

给你两个按 非递减顺序 排列的整数数组 nums1nums2,另有两个整数 mn ,分别表示 nums1nums2 中的元素数目。

请你 合并 nums2nums1 中,使合并后的数组同样按 非递减顺序 排列。

注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n

示例 1:

1
2
3
4
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。

示例 2:

1
2
3
4
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。

示例 3:

1
2
3
4
5
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。

提示:

  • nums1.length == m + n
  • nums2.length == n
  • 0 <= m, n <= 200
  • 1 <= m + n <= 200
  • -109 <= nums1[i], nums2[j] <= 109

进阶:你可以设计实现一个时间复杂度为 O(m + n) 的算法解决此问题吗?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
int[] res = new int[m + n];
int p = 0;
int i = 0, j = 0;
while (i < m && j < n) {
if (nums1[i] <= nums2[j]) {
res[p++] = nums1[i++];
} else {
res[p++] = nums2[j++];
}
}
for (; i < m; i++) res[p++] = nums1[i];
for (; j < n; j++) res[p++] = nums2[j];
if (m + n >= 0) System.arraycopy(res, 0, nums1, 0, m + n);
}
}

27. 移除元素

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组

元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

说明:

为什么返回数值是整数,但输出的答案是数组呢?

请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。

你可以想象内部操作如下:

1
2
3
4
5
6
7
8
// nums 是以“引用”方式传递的。也就是说,不对实参作任何拷贝
int len = removeElement(nums, val);

// 在函数里修改输入数组对于调用者是可见的。
// 根据你的函数返回的长度, 它会打印出数组中 该长度范围内 的所有元素。
for (int i = 0; i < len; i++) {
print(nums[i]);
}

示例 1:

1
2
3
输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。

示例 2:

1
2
3
输入:nums = [0,1,2,2,3,0,4,2], val = 2
输出:5, nums = [0,1,3,0,4]
解释:函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。

提示:

  • 0 <= nums.length <= 100
  • 0 <= nums[i] <= 50
  • 0 <= val <= 100
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public int removeElement(int[] nums, int val) {
int left = 0, right = nums.length - 1;
while (left <= right && nums[right] == val) right--;
while (left < right) {
if (nums[left] == val) {
nums[left] = nums[right];
right--;
while (left <= right && nums[right] == val) right--;
}
left++;
}
return right + 1;
}
}

26. 删除有序数组中的重复项

给你一个 非严格递增排列 的数组 nums ,请你** 原地** 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。

考虑 nums 的唯一元素的数量为 k ,你需要做以下事情确保你的题解可以被通过:

  • 更改数组 nums ,使 nums 的前 k 个元素包含唯一元素,并按照它们最初在 nums 中出现的顺序排列。nums 的其余元素与 nums 的大小不重要。
  • 返回 k

判题标准:

系统会用下面的代码来测试你的题解:

1
2
3
4
5
6
7
8
9
int[] nums = [...]; // 输入数组
int[] expectedNums = [...]; // 长度正确的期望答案

int k = removeDuplicates(nums); // 调用

assert k == expectedNums.length;
for (int i = 0; i < k; i++) {
assert nums[i] == expectedNums[i];
}

如果所有断言都通过,那么您的题解将被 通过

示例 1:

1
2
3
输入:nums = [1,1,2]
输出:2, nums = [1,2,_]
解释:函数应该返回新的长度 2 ,并且原数组 nums 的前两个元素被修改为 1, 2 。不需要考虑数组中超出新长度后面的元素。

示例 2:

1
2
3
输入:nums = [0,0,1,1,1,2,2,3,3,4]
输出:5, nums = [0,1,2,3,4]
解释:函数应该返回新的长度 5 , 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4 。不需要考虑数组中超出新长度后面的元素。

提示:

  • 1 <= nums.length <= 3 * 104
  • -104 <= nums[i] <= 104
  • nums 已按 非严格递增 排列
1
2
3
4
5
6
7
8
9
10
class Solution {
public int removeDuplicates(int[] nums) {
int lp = 0, rp = 1;
while (rp < nums.length) {
if (nums[lp] != nums[rp]) nums[++lp] = nums[rp];
rp++;
}
return lp + 1;
}
}

80. 删除有序数组中的重复项 II

给你一个有序数组 nums ,请你** 原地** 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。

不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。

说明:

为什么返回数值是整数,但输出的答案是数组呢?

请注意,输入数组是以「引用」方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。

你可以想象内部操作如下:

1
2
3
4
5
6
7
8
// nums 是以“引用”方式传递的。也就是说,不对实参做任何拷贝
int len = removeDuplicates(nums);

// 在函数里修改输入数组对于调用者是可见的。
// 根据你的函数返回的长度, 它会打印出数组中 该长度范围内 的所有元素。
for (int i = 0; i < len; i++) {
print(nums[i]);
}

示例 1:

1
2
3
输入:nums = [1,1,1,2,2,3]
输出:5, nums = [1,1,2,2,3]
解释:函数应返回新长度 length = 5, 并且原数组的前五个元素被修改为 1, 1, 2, 2, 3。 不需要考虑数组中超出新长度后面的元素。

示例 2:

1
2
3
输入:nums = [0,0,1,1,1,1,2,3,3]
输出:7, nums = [0,0,1,1,2,3,3]
解释:函数应返回新长度 length = 7, 并且原数组的前五个元素被修改为 0, 0, 1, 1, 2, 3, 3。不需要考虑数组中超出新长度后面的元素。

提示:

  • 1 <= nums.length <= 3 * 104
  • -104 <= nums[i] <= 104
  • nums 已按升序排列
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public int removeDuplicates(int[] nums) {
boolean isFirst = true;
int lp = 0, rp = 1;
while (rp < nums.length) {
if (nums[lp] != nums[rp]) {
nums[++lp] = nums[rp];
isFirst = true;
} else if (isFirst) {
nums[++lp] = nums[rp];
isFirst = false;
}
rp++;
}
return lp + 1;
}
}

169. 多数元素

给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。

你可以假设数组是非空的,并且给定的数组总是存在多数元素。

示例 1:

1
2
输入:nums = [3,2,3]
输出:3

示例 2:

1
2
输入:nums = [2,2,1,1,1,2,2]
输出:2

提示:

  • n == nums.length
  • 1 <= n <= 5 * 104
  • -109 <= nums[i] <= 109

进阶:尝试设计时间复杂度为 O(n)、空间复杂度为 O(1) 的算法解决此问题。

参考:多数元素(摩尔投票,清晰图解)(by Krahets)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/**
* 哈希统计法
* 时间复杂度:O(n)
* 空间复杂度:O(n)
*/
class Solution1 {
public int majorityElement(int[] nums) {
Map<Integer, Integer> map = new HashMap<>();
for (int num : nums) {
Integer count = map.getOrDefault(num, 0);
count++;
map.put(num, count);
}
int target = nums.length / 2;
int res = 0;
for (Integer num : map.keySet()) {
if (map.get(num) > target) {
res = num;
break;
}
}
return res;
}
}

/**
* 排序取中间元素(快速排序实现)
* 空间复杂度:O(n * log n)
* 空间复杂度:O(log n)
*/
class Solution2 {
public int majorityElement(int[] nums) {
Sort.quickSort(nums);
return nums[nums.length / 2];
}
}

/**
* 摩尔投票法,
* 注意题目中不是求一般的众数,而是限定出现次数大于一半的数!
* 空间复杂度:O(n)
* 时间复杂度:O(1)
*/
class Solution3 {
public int majorityElement(int[] nums) {
int x = 0, votes = 0;
for (int num : nums) {
if (votes == 0) x = num;
votes += num == x ? 1 : -1;
}
return x;
}
}

189. 轮转数组

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

示例 1:

1
2
3
4
5
6
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]

示例 2:

1
2
3
4
5
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]

提示:

  • 1 <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1
  • 0 <= k <= 105

进阶:

  • 尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
  • 你可以使用空间复杂度为 O(1)原地 算法解决这个问题吗?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
private void reverse(int[] nums, int begin, int end) {
int lp = begin, rp = end - 1;
while (lp < rp) {
int temp = nums[lp];
nums[lp] = nums[rp];
nums[rp] = temp;
lp++;
rp--;
}
}

/**
* 整个数组反转一次,
* 取 t = k % n(注意与翻转数组的不同)
* 再将反转数组的前 t 个元素后 n - t 个元素分别反转一次
*/
public void rotate(int[] nums, int k) {
int t = k % nums.length;
reverse(nums, 0, nums.length);
reverse(nums, 0, t);
reverse(nums, t, nums.length);
}
}

121. 买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0

示例 1:

1
2
3
4
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

示例 2:

1
2
3
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 105
  • 0 <= prices[i] <= 104
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
/**
* 遍历 prices 数组,
* 并维护一个变量表示当前遍历到的元素之前的所有元素中最小的元素,
* 将每个元素与数组中位于其之前的所有元素中最小的元素作差,
* 其中最大的差值即为所求解。
*/
public int maxProfit(int[] prices) {
int min = prices[0], res = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] > min) {
int tmp = prices[i] - min;
if (tmp > res) res = tmp;
} else {
min = prices[i];
}
}
return res;
}
}

122. 买卖股票的最佳时机 II

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润

示例 1:

1
2
3
4
5
输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
总利润为 4 + 3 = 7 。

示例 2:

1
2
3
4
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
总利润为 4 。

示例 3:

1
2
3
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。

提示:

  • 1 <= prices.length <= 3 * 104
  • 0 <= prices[i] <= 104
1


55. 跳跃游戏


45. 跳跃游戏 II